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1 Introduction and Overview

While computational methods have become increasingly refined and accurate, their reliance on exact
data, e.g., complete descriptions of geometries, materials, sources, etc., is emerging as a bottleneck
in the modeling of problems of realistic complexity. For instance, if one attempts to model an
experiment, a classic computational approach would require knowledge of a degree of detail which
is unrealistic and often impossible to obtain, e.g., one cannot hope to control all elements of an
experiment, measure all details of an initial condition or geometry, know the microstructure of all
materials, etc.

The usual approach to dealing with this lack of knowledge or uncertainty is to simply assume
some mean parameters and compute the corresponding solution. If the solution is robust to pa-
rameter variation, this is indeed a reasonable approach. However, for general problems, where the
sensitivity of parts of the solution can be significant, a solution based on mean parameters is not
likely to match very well with experiments and, thus, is not a good predictive tool. An experimen-
talist would naturally deal with this exact problem by repeating the experiments and, subsequently,
compute not only mean results but also error bars-reflecting, at least partly, the sensitivity of the
solution.

It is natural to strive to achieve similar abilities in computational modeling effort, e.g., compute
solutions or measures of interest and their associated sensitivities. Clearly, if a particular measured
entity is highly sensitive there is no reason to expect that this matches experiments exactly. Thus,
we would like to be able to model the impact of the uncertainty, assumed to have certain properties
derived from experiments or otherwise, on the computed results, essentially resulting in an ensample
of possible solution values with an associated probability. This would immediately enable the
computation of statistical moments, e.g., means and variances, and of other valuable information
about the sensitivity of solutions and derived quantities.

In this project we have pursued this goal and we present here a systematic, accurate, and efficient
way of addressing this type of problem, essentially enabling one to compute with an ensample of
data and, subsequently, obtain a full space-time ensample of solutions with an associated probability
density. It is important to realize that is this not a simple situation, since solutions may vary
nonlinearly in the uncertainty due to stochastic correlations even if the deterministic problem is
linear, e.g., Maxwell's equations.

A standard way of addressing problems of the type mentioned in the above is through Monte
Carlo sampling, e.g., run a deterministic code a large number of times and, subsequently, extract
the statistics of interest. The main problem with this approach is the very slow convergence rate,
O(N- 1/ 2 ), with N being the number of samples, which makes even the computation of mean
solutions expensive and accurate recovery of higher moments, e.g., variances, prohibitive.

Our platform on which to demonstrate this approach is the time-domain Maxwell's equations,
solved using a high-order accurate discontinuous Galerkin method. However, the basic elements of
the formulation are general and can be used with any computational kernel.

We have focused on the development of efficient and accurate means by which to provide quan-
titative measures on the impact on the radar cross section by uncertainties in general scattering
problems. The uncertainties can be present in the sources, the materials, or the geometries.

A summary of the main accomplishments are

* Validated the use of Wiener chaos expansion methods for a variety of Maxwell benchmark
problems. including internal, external, time-domain, and harmonic problems.
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" Developed a collocation form of the chaos expansion method to dramatically decrease the
computational cost of using such methods.

" Developed the chaos techniques to enable the modeling to uncertain sources, materials, and
geometries. The latter has resulted in the introduction of a new stochastic mapping technique
to enable the modeling of general scatterers.

" Developed techniques to model spatially correlated uncertainty based on statistical knowledge
of the uncertainty.

" Developed a theoretical understanding of the convergence rate and long time behavior of the
chaos expansion methods.

" Demonstrated the ability to apply such techniques to quantify the impact of uncertainty on
scattering problems and the resulting sensitivity of the RCS.

In the following we shall elaborate a little more on some of these many aspects.

2 Maxwell's equations

Let us consider a general domain Q2 and let ES and H s denote the scattered electric and magnetic
fields, respectively. With E(x) and i(x) being the local permittivity and permeability, and a(x) the
conductivity of the media, the time-dependent Maxwell's equations in the scattered field formulation
are given as

0ES
c-E = V x HS +uEs + SE, (1)at

OHS
/I --V x Es + SH, (2)

where, as is common in time-domain schemes, we have neglected divergence constraints, assuming
that these amount to constraints on the initial conditions.

The source terms, SE and S11, appearing on the right-hand side of (1)-(2), take the form

SE = -((- - )-T + ( o- a D E', (3)

OH

SH = _(4-L)aH' (4)

where the incident field (Ei,H') is a solution to Maxwell's equations in a media of permittivity,
permeability, and conductivity-E'(x), pi(x), o i (x), respectively.

We now turn our attention to boundary conditions. Along a perfect electric conductor (PEC),
tie boundary conditions on the electric field are

fi x Et = 0, (5)

where fi is the outward pointing normal vector at the surface and Et = E' + E' is the total field.
For the total magnetic field H', the condition is

H' i = O. (6)
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Along the interface of two dielectric bodies, denoted by the subscripts 1 and 2, we have
fi x (E' - E ' ) = 0 a n d i i x(Hs- Hs) =0; (7)

i.e., all tangential components are continuous.

3 Numerical scheme for the deterministic case

Before turning our attention to the case including uncertainties, let us briefly describe the computa-
tional methods used for solving Maxwell's equations in the physical space. We use a discontinuous
Galerkin formulation; the solution will be discontinuous between elements. This offers a num-
ber of advantages over widely used alternative techniques, e.g., geometric flexibility through fully
unstructured grids, high-order accuracy to enable accurate wave propagation over long distance
with a coarse resolution, and very high computational efficiency through explicit time stepping and
high parallel performance. The method has been discussed, analyzed, and validated extensively for
Maxwell's equations and we shall simply sketch its main components.

We rewrite Maxwell's equations (1)-(2) in conservation form

Oq
Q-q + V. F(q) =S, (8)

at

where q is the state vector formed by the scattered electric field and the magnetic field

q = n ) (9)

and the components of the tensor F are defined by

Fe(q) Ei x ) (10)

where ei denotes the Cartesian unit vectors. On the right-hand side of (8), S = [SE, S H I is the
source term, which depends on the incident field, and the material matrix Q is a diagonal matrix
with values ((, (, u,. It, i) on its diagonal.

We a.ssume that the computational domain, Q, is tessellated by triangles or tetrahedrons, D,
and we represent the local solution qN as

N

qN(x, t) = Zi(t)Li(x), (11)
i=1

where i reflects nodal values, defined on the element, and Li(x) signifies an nth order Lagrange
polynomial, associated with grid points.

The discrete solution, qN. of Maxwell's equations is required to satisfy

O (Q N + V F(qN) - SN) Li(x)dx = iD -" [F(qN) - F*]Li(x)dx. (12)

In (12), F* denotes a nunerical flux and fi is an outward pointing unit vector defined at the boundary
OD of the element D. Note that this is an entirely local formulation, and relaxing the continuity
of the elements decou)les the elements, resulting in a block-diagonal global mass matrix which can
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be trivially inverted in preprocessing. The price to pay for this is the additional degrees of freedom
needed to support the local basis functions. For high-order elements, this is, however, only a small
fraction of the total number of degrees of freedom. Given the linearity of Maxwell's equations, and
for stability reasons, it is natural to use an upwinding flux which takes the form

fi [F(qN) - F*] = 2-fi x (ii x [EN] Z+[HN) (13)

where the bracket [q] q- - q+ denotes the jump in the field values (q- is the local value and
q+ is the neighboring value) across an interface, Z1 is the local impedance, and Y± is tile local

conductance,

1 - (14)

Z and V in (13) are the sums

=Z + + Z - , Y=Y++Y-. (15)

After discretization of the operators and evaluation of the integrals appearing in (12), the problem
can be rewritten in matrix-vector form

QM- q + S- FN - AISN = Ffi. [FN - F*I. (16)
dt

The matrices M, S, and F represent the local mass-, stiffness-, and face-integration matrices.
Note that the local nature of the scheme allows for the use of an explicit solver for the time
discretization of (16). This is traditionally done using an explicit Runge-Kutta method, although

suitable alternatives are plentiful.

4 Accounting for the uncertainty

To deal with the actual lack of detailed knowledge leading to the uncertainty, we must make some
educated guesses-a model- --about the nature of the possible variations in the data. These models
can be based on pure speculation, on measured data, or on other available information. Once this
is done, however, we must introduce this into the computational approach in an efficient, accurate,
and robust manner.

Consider, as a simple example, the wave equation

Ou + a(O)nx =0! (17)

where 0 is a random parameter with some associated probability density function (PDF). Thus,
this represents an ensemble of wave problems, each with all individual phase speed occurring with

a probability given by the PDF; i.e., the solution u is not only a function of (x, t) but also of 0, and
tile equation is a stochastic wave equation.

The actual form of a(O) may not be known, causing the introduction of the uncertainty. However,
it seems quite reasonable that in many situations one cal measure or conjecture the average of a
and perhaps its variation; i.e., one cal reasonably assume that a(O) varies in a certain way related
to a normal distribution with a given mean and variance.
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The question remains, however, how this uncertainty will affect the solution, u(x, t, 0), and,
more often, its moments such as the mean and the variance. This is not a trivial question, as the
uncertainty essentially renders the simple linear problem considerably more complex due to possible
stochastic dependence between a and u.

One could naturally solve the above problem for a large number of values of 0, taken from a
proper distribution, and, subsequently, compute the appropriate moments. This is the essence of
a Monte Carlo method and suffers from a very slowly converging result as l/vrN, with N being
the number of samples. If higher-order moments, e.g., the variance or sensitivity of the result, are
required, this is often prohibitive.

In the above example, the uncertainty enters through the phase speed. However, as we shall see
shortly, dealing with uncertainty in initial conditions, boundary conditions, sources, or computa-
tional domain/geometries can be done in an entirely similar fashion.

In this section, we shall discuss two variations, referred to as stochastic Calerkin and collocation,
respectively, of the same underlying result. This enables one to discretize stochastic partial differ-
ential equations (SPDEs) to recover systems of deterministic problems which we can subsequently
solve with the methods discussed later. As we shall experience through examples, both techniques
offer excellent accuracy at a severely reduced computational cost as compared to siraightforward
Monte Carlo methods.

4.1 The homogeneous chaos expansion

The key result on which we shall rely is due to Wiener and shows that the chaos expansion can be
used to approximate any functional in L 2 (Q, P), where P is a Gaussian measure on iL For such a
random variable X(O), the chaos expansion is written as

X(O) = aoHo (18)
d

+ a , Hl( j,(0))
21=1

d ii

+ 7 L aj2 H2( j (0) 1 2 (0))
il=1 i2=1

d ii i2

+ E E E a(), i2(o), i2(6))
i1= i2=1 i3=1

where = (0 (0), ... , d(0)) represents d independent Gaussian variables with zero mean and unit
variance, each depending on the random event 0, and H,, are the multivariate Hermite polynomials
defined as

H . ( j,(0), .. , i (0)) = e ( -) ,2 ir

O i,,.....O,i,, e 2( 9

The number of terms in the expansion (18) grows as

p = (n + d)! (20)
,n!d!

where n is the length of the Hermite expansion and d is the dimension of the Gaussian random
space. The polynomial homogeneous chaos expansion forms a complete orthogonal basis in the
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space of Gaussian variables, i.e.,

(Hi ( , (0),.., , (0)), Hj ( j (0),. , j. (0))) (21)

= II?" Hi(i 0,., i O)j ( ),..., jn (0)) e T d = i6j
Rd V 27r)d

where i denotes the multi-index (ij,..., i,) and i! iiI,..., i, !. Thus there is an intimate relation
between the Hermite polynomials, orthogonal under the Gaussian weight, and the representation
of random variables taken from a Gaussian distribution. One way of interpreting the homogeneous
chaos expansion is that a general random variable can be expressed in terms of simpler Gaussian
variables for which we can construct an efficient computational approach. Clearly, if the random
variable is far from Gaussian, many terms in the expansion will be needed; i.e., n must be large. An
alternative is to use an expansion in terms of other random variables with an associated distribution
closer to what is expected at input or output. For notational convenience, we can rewrite (18) in
the form

P

X(o) = Zbj j (22)
j=1

where there is a one-to-one correspondence between the functions Hi and %Ij and also between the
coefficients ajl .jp and bj. In the case of a general stochastic process, these coefficients will be time
dependent.

To model the impact of uncertainty on the propagation of electromagnetic waves, we include the
randomness in the usual spatial-temporal dimensions; i.e., the electric field and the magnetic field
become E(x, t, 0) and H(x, t, 0), reflecting that the fields are functions of d independent random
variables, ( jj (0) .... I il (0)).

In the following we shall discuss in some detail how this can be utilized to construct an efficient
computational method. For simplicity of the discussion, we assume in what follows that one Gaus-
sian variable suffices to represent the process (i.e., d = 1). However, the formulation is general and
applies to problems requiring many random variables to describe the stochastic processes.

4.2 Stochastic Galerkin formulation

Using the chaos expansion, we can express q(x, t, 0) = (E(x, t, 0), H(x, t, 0))T a.s

P
q(x, t, 0) = 'q(x, t)qi(0). (23)

i=1

We can write the computational scheme, which takes into account randomness in a general set t ing,
a's

s Q(O)A Id + S. FN - AIS()N Ff- II[FN - F1,dt (24)

qN(x,t = 0,0) = f(x,0),

where the initial conditions are given by the function f = f(x. 0) and the unknown vector qN is

given by (23). As a first step, we discretize (24) in the random space using a Galerkin approach.
Multiplying (24) by a test function 'Pk(O), replacing qN by its chaos expansion, and using the scalar
product defined by (21), we obtain

P 1

Vk C [1, PI Z(QPi, Tk) Ad +k!S.Fk-ASk=F _h-[F - (25)
dt N N =

7_ ! k-i



where we have used property (21). The detailed expression of the terms on the right-hand side is

fi - [F' ( -K-* 1 I,'k)f i x fix [El - (Z+-'i, Ik) fi x [H'] (26)
N KIP,11) fi x fi x [H'] + KY+Y"Ii, 'IP) fi x [El )

Recall that Z and Y may depend on the material properties and, thus, may include uncertainty/randomness.

The initial conditions in (24) also need to be projected onto the chaos basis to give an initial
condition for each mode of q' in the chaos expansion, i.e.,

1
Vi E [1, P] : q'v(x, t = 0)= (f (x, ), To) (27)

Once the vectors {q' }l<i<p of the system (31) have been computed, we have available at every
point in space an approximation to the probability density of the solution to the system.

Considering (31), we observe that we have managed to recast the general stochastic problem into
a system of P coupled deterministic problems which we can now discretize in space/time exactly as
discussed in section 3-or in any other preferred way.

4.3 Stochastic collocation formulation

The idea of the stochastic collocation formulation is to replace the expression of the electric and
magnetic fields (23) in the polynomial chaos expansion with a Lagrangian polynomial basis, i.e., we
would have

P
q(x, t, 0) = q'(x, t)Li(O), (28)

i=1

where {Li(0)} 1 <i<p forms a Lagrangian polynomial basis of degree (P - 1). In the deterministic
community, (23) would be referred to as a modal expansion and (28) as a nodal expansion. Since
0 in (28) is a Gaussian variable with zero mean and unit variance, it seems natural to use Gauss-
Hermite collocation points as the basis for the Lagrange polynomials, as that also enables accurate
evaluation of integrals.

The stochastic collocation method is essentially a deterministic or lattice Monte Carlo method
with samples { v"2j} J<j<P. The crucial difference is that a typical Monte Carlo simulation consist-
ing of P realizations will converge at the slow rate 1/v/'P-, whereas the convergence of the stochastic
collocation method is much faster, as will be shown by numerical examples. A simple analogy is
that the approximation of a smooth function, the PDF, is done most efficiently by representing
it by smooth polynomials based on points well suited for interpolation. In a simple Monte Carlo
approach, the interpolation points are random, leading to a poor convergence rate.

We presented the stochastic collocation method for a random space of size d = 1. The gener-
alization to higher random spaces is straightforward, using tensor products of quadrature points.
Note that for higher random spaces and for purposes of efficiency, it might be necessary to use
sparse grid methods

4.4 Modelling of a random surface

We consider an object whose shape can vary in a random fashion. As an example, Figure 1 shows a
disc which is modelled by (n- 1) line segments [XiXi+] 1<i<nr-1 from a finite element mesh. Those
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Figure 1: Points Xi = (ri cos(Oi), ri sin(0i)) defining the boundary of an object.

line segments are defined by the points of polar coordinates Xi = (ri cos(Oi), ri sin(Oi))I<i<,. We now
assume that the point Xi can be moved randomly by a quantity 6Xi = (bri cos(0i), 6ri sin(Oi))l<i<n,
to take a new position (Xi + bXi) = ((ri + bri) cos(Oi), (ri + 6ri) sin(Oi))I<i<,. We further assume
that two points (say Xi and Xj) with polar angles Oi and Oj close to each other should have a
random height I1Xill close to 116Xjll. This is done by introducing the covariance matrix K such
that:

Kij ce -  , 
b(29)

where

if i[,r
3i = -O if Oic EO, 27r] (30)

In the definition of Oi we have to separate the cases 0i C [0, 7r] and Oi E]0, 2r] to ensure that two
points on the random surface, one with a polar angle close to 0 and the other one with a polar angle
close to 27r, be strongly correlated. In the relation (29), b is a parameter which can control how
correlated two points Xi and Xj can be and c is another parameter which controls the roughness
of the surface (the magnitude of 16Xi 11 for i = 1, .. , n is directly proportional to c). Furthermore, c
is the standard deviation of each component of Sr.

To generate a random surface, the problem can be formulated as follows: find a random vector
6r = (brl, 6r 2 , ... , 6rn)T with a given covariance matrix K that will generate the new random surface
(Xi + Xi) = ((ri + 6ri) cos(Oi), (ri + 6ri) sin(Oi))1<i<n. This procedure is illustrated in Figure 2,
where a triangle (A, Xi, Xi+,) having one side [XiXi+1] sitting on the boundary of the object is
distorted into a new triangle (A, Xi + 6Xi, Xi+1 + 6Xi+l) which side [(Xi + 6Xi)(Xi+I + 6Xi+l)] will
compose the new shape of the object. From a practical point of view, this can be easily done by first
generating a vector G = v/-(al, c 2 , ... , a,)T , where el, a2, -.., O, are random independent variables
following (for example) a uniform law on the interval [-1, 1]. Since K is symmetric definite positive,
it can be decomposed as K = PDP-1, where D is a diagonal matrix with positive eigenvalues on its
diagonal. Then, it can be shown that the vector Jr given by Sr = PD 1/2G will be a random vector
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Figure 2: Illustration showing how the points on the boundary of an object are moved randomly.

with covariance matrix K. In terms of implementation, one generates independents pseudo-random
numbers al, 02, ..., O, with a uniform law on the interval [-1, 1], then the vector 6r is given by the
matrix-vector product PD 1

/
2G (the matrix PD 1/ 2 can be pre-computed and stored once for all).

The coordinates of the points of the new random surface will be (Xi + 6Xi) for i = 1, ... , n. The
procedure described here for a disc can be easily adapted to objects with more general shapes, as
will be shown in the numerical experiments section.

As an example, we have considered a somewhat simplified rocket in Figure 3. Figure 4 shows
a zoom of its front part for the original (non-distorted) rocket and a typical sample mesh, when
the procedure described above has been applied (here, we take b = 5 and c2 = 0.002 in equation
(29)). It should be noted that with this procedure, one just needs to generate a single mesh for
the problem to be solved (the mesh of the object with its original shape, i.e. the mesh of Figure 3,
for example). One needs to be careful that once the points defining the original object have been
moved randomly, the triangles sitting on the object do not distort the mesh too much. This can be
easily controlled by the parameter c in equation (29) which is directly linked to the amplitude that
6ri can take. The coordinates of the points which define the finite element mesh only occur in the
matrices M, S, and F of equation (16) and those quantities are constant element by element. Since
those matrices appear as multiplicative coefficients into Maxwell's equations we have transformed
a problem with an object having a random shape (which usually requires the generation of a new
mesh for each sample) into an equivalent stochastic problem having a fixed mesh but with random
coefficients.

5 Computation of sensitivity of the RCS

The (2D) RCS under the scattering angle 0, is a function of the following integral along dC

F(0$) = -lei z4d, (nyk-- n_ky)±+

(n. cos 0 + ny sin 0) Ez]

j21rf(xcos(¢+ysin 0)dl (31)
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Figure 3: Original mesh for the rocket problem.

\ Z A

Figure 4: One sample of a mesh for the rocket with a random shape together with its original shape.
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and normalized as

RCS(O) = 27rf I 2

JEo 12

where E0 is power of the incoming field. For the 2D calculations, a scaling equal to the wavelength
A is applied to the RCS, i.e. the plots of the RCS on a dB scale are simply

RCSdB(O) = 10loglo(RCS(O)/A).

For the RCS for 3D scattering objects, a scaling equal to A2 is applied.

5.1 Using Monte-Carlo simulation

A Monte-Carlo simulation is therefore quite simple: one simply need to generate (say) Al random
vectors { nrl1<T,M as described above. Each set of random numbers will give a new random
surface from which we can compute Al solutions of Maxwell's equations. Those M solutions of
Maxwell's equations, will give Al radar cross section {RCS.I1<m<A from which we can compute
averages as follows:

< RCS >= F X RCS,,. (32)
,n= I

And for the variance, we have

vor(RCS) Y (RCS",)2  < RCS >2 (33)
Al "= ,

It should be noted that, the advantage of the Monte-Carlo approach is its simplicity (it only requires
repetitive runs of an existing deterministic solver), but it is hard to get accurate solutions due
to its slow rate of convergence Q(M-1/ 2 ). In the next subsection, we will introduce a stochastic
collocation method which has the simplicity of the Monte-Carlo approach but with better rates of
convergence.

5.2 Computation of sensitivity of RCS using stochastic collocation

About fifty years ago, Stroud constructed a set of cubature points to compute integrals of the form

I[f] = j111" f/(x)dx. (34)

This set of cubature points based on (n + 1) points is exact for polynomials of degree two, and the
approximation is written as

n±1
II[f I- Wi cf (xi), (35)

i= I
where the (n + 1) cubature points xi (x>,x , .<) are given by

2r-1 22 (2ri- 1)7x = cos (2( (36)

X, 2r = 2sin1 (2r(i -1i

3 \. n (3
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for r = 1,..., [n/2], and if n is odd, x = (-1)(i-)/v/3. The weights in (35) are all equal to 2"/(n+1).
Similarly, we have the Stroud-3 method based on 2n points which is exact for polynomials of degree
three

2n
Wif f_ -c(xi), (37)

i=1

where the 2n cubature points xi = (xi, x,..., ?i) are now defined by

x2r-1 2 ((2- 1)ir)(3 no (38)

X 3 sin (2r

for r = 1,, [n/2] and if n is odd, similarly we have, x ' = (-1)i/V3. The weights in (37) are all
equal to 2"/2n. It can be shown that Stroud-2 and Stroud-3 methods employ the minimal number of
points for their corresponding integration accuracy. Since Stroud-2 and Stroud-3 methods appeared,
many other cubature formulae have been established to compute various high-dimensional integrals.
In the 70's, Stroud published a book containing most cubature formulae known at that time. This
extensive work was then continued by Cools in a series of two papers. The idea of the stochastic
collocation method is based on polynomial interpolations in the multi-dimensional randon space.
We assume that Lagrange polynomials based on Stroud's cubature points exist, and we express the
RCS using the Lagrange interpolation polynomials, which gives (for Stroud-2 cubature points)

nt+1

RCS(x) = RCS L,(x), (39)
i= 1

where {Lj}j<j<,,+j are (n + 1)-variate Lagrange polynomials based on points {Xi}i<i<,+1 of the
cubature formula (35). We note that by construction of Lagrange polynomials, we have Li(xj) = 6ij
and therefore RCSi = RCS(xi). The radar cross sections RCS(xi) can be easily computed as
follows:

" for each cubature point xi generate a new surface with Jrj = PD'!2 Gi and Gi = vi3xi
(i = 1,...,n + 1)

* compute the corresponding solution of Maxwell's equations

* compute the corresponding radar cross section RCS(xi)

The expression of the RCS is now available under the form (39) and we will show that, statistical
quantities, e.g. mean and variance, can easily be computed. By taking the average of equation (39)
and evaluating the multi-dimensional integral with Stroud-2 cuature formula (35), we get

1 1+
< RCS(x) >= RCSJ Li(x)dx

2 2 RCSi E wjLi(x,j)
i=1 j=1
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Similarly, for the variance, we have

, n+l , _>

var(RCS(x)) - wRCS < RCS(x) >2 (40)

The same procedure can be used with Stroud-3 cubature, and in that case, 2n realizations of the
RCS corresponding to the 2n cubature points of equation (37) will have to be computed. When
the random space is one-dimensional this procedure can also be repeated for the Legendre-Gauss-
Lobatto quadrature.

Alternatively, we could have used orthogonal polynomials to express the RCS. i.e. equation (39)
would have to be replaced by

n+ 1

RCS(x) = RCSD(x), (41)
i=1

where 4)i(x) are orthogonal polynomial on [-1, 1]'. The expression (41) is usually referred as
"polynomial chaos expansion" and was used in a number of mechanical problems. The problem of
this approach lies in the difficulty to compute in an efficient way the coefficients RCS.

5.3 Reduced random space

For the stochastic collocation method, we have seen that there is a close relation between the size of
the random space n and the number of calls to the deterministic Maxwell solver (i.e. we need (n + 1)
calls for Stroud-2 and 2n calls for Stroud-3). A way of reducing the CPU cost of the method would
be to reduce the size of the random space n. This is possible, up to a certain extent, depending on
the covariance matrix K defined by equation (29). Let us consider the two extreme cases:

First, we assume that b -, 0 and c = 1 in equation (29); in this case, K = I is the identity
matrix and P = D = I. In other words we will need n independent and identically distributed
random variables to describe the process since all points of the object are uncorrelated.

Now we assume that b -* oo and c = 1 in equation (29); in this case, all variables are fully
correlated. We have Kij = Pj = 1 for i,j = 1, ..., n; D 1 = 1 and Dii = 0 for i = 2 ...,n. Thus, all
n points of the sample 6r =(6rl, 6r 2 ,..., 6r, )T = PD 1/2G are moved with the same amplitude, i.e.
6r, = Jr 2 = ... = 6r,. This means that n = 1 would suffice to describe the problem. In practice, we
are between those two extreme cases and the size of the random space can be given by the number
of significant eigenvalues of D denoted by m. (with m < n). Then, the modified algorithum proceeds
as follows:

9 Compute the n eigenvalues {Ai}I<i<n of the matrix K and select the m most significant ones
satisfying IA, > TOL, where TOL is some small number. The integer tn will be t he size of
the random space needed to move the points of the objects randomly.

14



" We denote by P and D the matrices of size n x m constructed from the restriction of the
matrices P and D where we have only kept the most significant eigenvalues and their associated
eigenvectors.

" Since the dimension of the random space is reduced to m < n, the collocation points x
are m-dimensional vectors based on quadrature points for the computation of 71-dimensional
integrals. For Stroud-2, we have (m + 1) points and for Stroud-3, it is 2m.

* The vector Jr used to move the mesh is now given by 6r =(Jrl, 6r 2 ,..., 6r )T = ph/2G,
where G = v3x.

6 A few examples

We now consider a square of width 0.8A whose mesh consists of 840 elements. Again, A is the
wavelength of the incident plane wave. The dimension of the full random space is 44, which means
that the square is formed by 44 points of the finite element mesh. The parameters b and c2 in
equation (29) are taken equal to 5 and 0.001, respectively. This choice of c corresponds to the
radial randomness having a standard deviation of about 0.032A. By choosing b = 5, the covariance
matrix K defined by (29) is more diagonal dominant than it was in the previous example, and the
number of most significant eigenvalues is reduced to ?n = 16. Due to the geometrical singularities
in the corners of the square, this is a much harder problem to solve than the cylinder problem.
This is illustrated on Figure 5 and 6, where we show the mean and the variance of the RCS for the
Stroud-2, the Stroud-3 and the Monte-Carlo methods using 250 samples. We can see on Figure 5
that the mean converges to the same values for the three methods. However, for the variance, the
Stroud-3 and the Monte-Carlo methods give similar results but the Stroud-2 method gives results
which have not converged, especially in the sidebands. This is because Stroud-2 can only integrate
exactly multi-variate polynomials of degree two at most, and the exact solution of this example
cannot be accurately represented by such polynomials. On the other hand, Stroud-3 which can
integrate exactly multi-variate polynomials of degree three at most does a better job. In order to
emphasize the cost saving of Stroud-3 method over Monte-Carlo method, we have represented the
variance of the RCS for Stroud-3, Monte-Carlo with 32 samples (which has the same CPU-cost as
the Stroud-3 method) and Monte-Carlo with 250 samples in Figure 7. We see that as we increase
the number of samples, the Monte-Carlo solution converges slowly to the Stroud-3 solution. Figure
8 shows the average of the RCS and the possible variations around its average value obtained with
Stroud-3 cubature. We can see that like for the cylinder problem, the uncertainty in shape affects
the RCS mostly in the sidebands.

6.1 General shape

As a last shape, we consider the (simple) rocket shown in Figure 3 which is A long and the body is
0.25A wide. The mesh consists of 1465 elements and the dimension of the full random space is 45
(i.e. the rocket is formed by 45 points of the finite element mesh). As for the square problem, the
parameters b and c2 in equation (29) are taken equal to 5 and 0.001, respectively and the size of
the random space can be reduced to m = 14. This choice of c corresponds to the radial randomness
having a standard deviation of about 0.032A. Similarly to the square problem, good convergence
of the average RCS is obtained both for Stroud-2, Stroud-3 and Monte-Carlo simulations. However
for the variance of the RCS, only Stroud-3 and Monte-Carlo with enough samples (i.e. more than
250) give good results. Figure 9 shows the average of the RCS and the possible variations around
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Figure 5: Comparison of the average of the RCS for the square problem for Stroud-2, Stroud-3 and
Monte-Carlo methods.
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Figure 6: Comparison of the variance of the RCS for the square problem using Stroud-2, Stroud-3
and Monte-Carlo methods.
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Figure 9: RCS for the rocket problem. Results are shown with the mean RCS as well as + one
standard deviation.

its average value obtained with Stroud-3 cubature. For this case, the uncertainty in shape affects
the RCS both in the middle part and in the sidebands.

6.2 Higher frequency cases

As a last numerical experiment in two spatial dimensions, we increase the frequency f of the source
term (??) up to f = 3. This causes the radius of the cylinder to increase to 3A and the size of the
rocket to increase to 3A long and 0.75A wide in the body. For these cases the radial randomness has
a standard deviation of about 0.095A. For all the previous numerical experiments, we have used
4th order elements in each triangle of the finite element grid. Due to the higher frequency, all the
results shown in this section are obtained with 6th order elements to get converged results in the
physical space (i.e. the value of p defined below equation (11) is increased to p = 6). Figures 10
and 11 show the average of the RCS and the possible variations around its average value obtained

with Stroud-3 cubature for the cylinder and the rocket problem, respectively. The form of the
uncertainty remains the same as in the previous numerical examples, the only difference being the
frequency of the source term. By comparing Figure ?? with Figure 10 and Figure 9 with Figure

11, we see that as we increase the frequency, the regions where the RCS has the greatest variance
remains more or less the same. In this numerical experiment, convergence of the average of the RCS
and the variance of the RCS is good for the cylinder problem, for both Stroud and Monte-Carlo
methods. However, for the rocket problem only Stroud-3 and Monte-Carlo with enough samples

give converged results for the variance.

6.3 Sphere

For a first example with three spatial dimensions we consider the scattering of a transverse magnetic
plane wave from a PEC sphere. We assume the sphere has a uniform random radius in the interval
[0.9A, 1.lA], where A is the wavelength of the incident field. The use of one random variable is
not a limitation of the method but is (lone for logistical reasons to have reasonable computation
times. Since this experiment has only one random dimension, a sixth order Legendre-Gauss-Lobatto
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Figure 10: RCS for the cylinder p)roblenm at higher frequency. Results are shown with the mean
RCS as well as ±one standard deviation.
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Figure 11: RCS for the rocket problem at higher frequency. Results are shown with the mean RCS
as wvell as ± one standard deviation.
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Figure 12: One sample of a surface mesh for the sphere with a random radius.

Figure 13: RCS for the sphere problem. Results are shown with the mean RCS as well as + one
standard deviation.

quadrature is used for collocation in the random space. For the spatial discretization we use fourth
order elements and a sample mesh is presented in Figure 12 which is restricted to the surface of
the sphere. Figure 13 shows the average of the RCS and the possible variations around its average
value. The uncertainty in the radius of the sphere affects the RCS mainly in the sideband.

6.4 Three-dimensional rocket

For the second experiment with three spatial dimensions we consider the scattering of a transverse
magnetic plane wave from a PEC rocket. The orientation of the scattering plane and the scattering
angle 0 is is given in Figure 14 along with a geometric description of the rocket. The scattering angle
of the incident field is assumed to be random with uniform distribution in the interval [10', 20°1. As
in the case for the sphere, the use of one random variable is not a limitation of the method but, is
done for logistical reasons to have reasonable computation times. A fourth Legendre-Gauss-Lobatto
is used for collocation in the one-dimensional random space. For this calculation the physical space
is discretized with degree five polynomials in each element. Figure 15 shows the mesh used restricted
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Figure 14: The orientation of the rocket with respect to the scattering plane is given in (a). Here 0
is the scattering angle. The top view presents a projection of the rocket onto the scattering plane.
The geometric description of the three-dimensional rocket is given in (b). Here A is the wavelength
of the incident field.

Figure 15: The surface mesh for the three-dimensional rocket.

to the surface of the rocket and Figure 16 shows the average of the RCS and the possible variations
around its average value. The uncertainty in the direction of the incident field affects the RCS
mainly near the local maxima and minima points of the RCS.
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Figure 16: RCS for the three-dimension rocket problem. Results are shown with the mean RCS as
well as I one standard deviation.
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10 Transition

As outlined in the original proposal, it was planned that some of the techniques being developed in
this effort be implemented into the TEMPUS CEM code, developed and maintained by HyperComp,
Inc and used extensively for RCS prediction and modeling by DoD contractors and laboratories.

This has been accomplised and we stay in continued close contact, The PI has visited HyperComp
several times during the period to report on progress and discuss ways of implementing the developed
techniques into TEMPUS which now has elementary support for uncertainty quantification During
the effort, we have also stayed in close contact with WPWFB (Dr Caiberos) to update him on status
and enable a possible future transition of the technology to their internal simulation framework.
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